2-(3,4-dimethoxyphenyl)-1-[5-hydroxy-3-methyl-5-(trifluoromethyl)-4H-pyrazol-1-yl]ethanone is a chemical compound with a complex structure. While the exact application of this specific compound might not be readily available in public databases, we can break down its structure and potential significance for research:
**Structure:**
* **2-(3,4-dimethoxyphenyl):** This part refers to a phenyl ring (a six-membered carbon ring) with two methoxy groups (CH3O-) attached at the 3rd and 4th positions.
* **1-[5-hydroxy-3-methyl-5-(trifluoromethyl)-4H-pyrazol-1-yl]ethanone:** This indicates a pyrazole ring (a five-membered ring containing two nitrogen atoms). The pyrazole ring is further substituted:
* **5-hydroxy:** A hydroxyl group (-OH) is attached at the 5th position.
* **3-methyl:** A methyl group (-CH3) is attached at the 3rd position.
* **5-(trifluoromethyl):** A trifluoromethyl group (-CF3) is attached at the 5th position.
* **1-yl]ethanone:** This indicates that the pyrazole ring is connected to an ethanone group (CH3CO-) via a nitrogen atom at the 1st position.
**Potential Importance for Research:**
The complex structure of this compound suggests it could be:
* **A pharmaceutical lead:** The presence of a pyrazole ring, aromatic groups, and functional groups like hydroxy and trifluoromethyl is typical of many drug molecules. This compound could be a potential lead for developing drugs with various biological activities.
* **A chemical reagent:** The compound's structure might make it useful in chemical synthesis or as a reagent for specific reactions.
* **A probe for biological studies:** The presence of specific functional groups could make it a suitable probe for investigating biological processes or interactions.
**To further understand its significance:**
* **Need specific research context:** To understand its specific importance, one needs to know the research area or context where it was discovered or synthesized.
* **Published research:** Searching for publications that mention this specific compound or similar structures could provide more information about its significance in specific fields.
**Note:** This is just a preliminary analysis based on the structure of the compound. Without additional context or published research, it's impossible to definitively determine its exact importance.
ID Source | ID |
---|---|
PubMed CID | 3136707 |
CHEMBL ID | 1489130 |
CHEBI ID | 121000 |
Synonym |
---|
smr000283130 |
MLS000689107 |
2-(3,4-dimethoxyphenyl)-1-[5-hydroxy-3-methyl-5-(trifluoromethyl)-4,5-dihydro-1h-pyrazol-1-yl]ethanone |
STK053046 |
CHEBI:121000 |
AKOS001642664 |
HMS2715K05 |
2-(3,4-dimethoxyphenyl)-1-[5-hydroxy-3-methyl-5-(trifluoromethyl)-4h-pyrazol-1-yl]ethanone |
CHEMBL1489130 |
AKOS022078951 |
Q27209236 |
Class | Description |
---|---|
dimethoxybenzene | Any methoxybenzene that consists of a benzene skeleton substituted with two methoxy groups and its derivatives. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
apical membrane antigen 1, AMA1 | Plasmodium falciparum 3D7 | Potency | 25.1189 | 0.7079 | 12.1943 | 39.8107 | AID720542 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 100.0000 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
huntingtin isoform 2 | Homo sapiens (human) | Potency | 1.1220 | 0.0006 | 18.4198 | 1,122.0200 | AID1688 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 89.1251 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 17.0157 | 0.0079 | 8.2332 | 1,122.0200 | AID2546; AID2551 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |